
Scripting, Part Two: Looping
for Fun and Profit
Crafty System Administrators who want to conserve energy need to learn the fine
art of looping.
By Ken Hess
Thursday, June 30th, 2011
16Share

You energy-conserving* system administrators will enjoy learning to use loops in your scripts.
Looping is a technique that allows you to repeat a process or set of commands indefintely or until the
loop exhausts a particular list of items. For example, you want to copy a particular file to everyone’s
home directory. How do you do it? Don’t say that you have a junior-level administrator do it. The
correct answer is that you’d create a looping script to handle the job.

Don’t worry if you aren’t a scripting master, I’m going to take it slow through this series so that you
can absorb what’s going on. Looping is not a particularly advanced concept. Its purpose is to do
some task quickly that would take hours or days to do it by hand. Looping leverages the computer’s
power to do what it’s best at: repetitive processing.

The Basics

You need access to a Linux system and last week’s post, “Scripting, Part One”. You’ll also need
access to an open mind about scripting. It isn’t difficult at all, so approach this with no fear and in no
time, you’ll create your own scripts and possibly impress your leadership with your innovation,
business concern, and cost-saving automation.**

The Lively Loop

There’s nothing particularly special about a loop. It takes a bit of thought to make one work but it’s
well worth the effort. How do you know that you need to use a loop instead of simply running a script
multiple times with different parameters? The answer depends on the amount of effort required to
edit the script, execute the script, enter information interactively, and so on. It’s really a decision
you’ll have to make as you gain experience with scripting. There’s no easy answer or number of
iterations cutoff.

My original example is a good one. You need to copy a file to everyone’s home directory and you
have dozens of users. This task, if done manually, would take hours. The solution is to write a script
to handle the task for you.

First, look at what’s needed to make this happen: a list of users, the file in question, and, depending
on the file’s purpose, an optional permissions change. Pretty simple task really. To make the reading
(and writing) less tedious, I’ll use the handful of users on my system to make this happen.

Next, put your needs into Linux terms. You need to iterate through a list of users from the
/etc/passwd file, copy a file to each user’s /home/username directory, and then change its
permissions so that the user has access to it.

You have to grab a list of real user’s names from the password file. To do that, you have to write part
of the script. Create a new file and enter that file in edit mode.

#!/bin/bash

Grab a list of users from the /etc/passwd file

cat /etc/passwd |grep bash |grep home | awk -F: '{print $1}'

This part of the script reads the /etc/passwd file, selects only those entries with the term bash,
further selects those that also contain home, and then pipes that output to awk. The awk piece
divides each line into fields separated at a colon (:).

An /etc/passwd file looks like: khess:x:1000:1000:Ken Hess,,,:/home/khess:/bin/bash. The awk
command would break this line into seven fields. Using a field variable ($1, $2, $3,…$7), you could
print any of them in any order.

Try it at the command line to convince yourself of how awk works.

cat /etc/passwd |grep khess | awk -F: '{print $1, $3, $5}'

khess 1000 Ken Hess,,,

Try it with other field variables in other files. If the only field separator is a space, then use awk -F” “
with a quoted space as the field separator.

The output from the original script(cat /etc/passwd |grep bash |grep home | awk -F: ‘{print $1}’) is:

khess

nimbus

bob

matthew

mark

luke

john

The most difficult part of creating a list of users is done. The rest of the script is a simple while loop
and some additions to make the whole thing a little prettier to read. Enter the following, as shown,
into your editor and save the file to copy_file.sh. I’ve included comments in the file.

#!/bin/bash

Grab a list of users from the /etc/passwd file and direct to a file.

cat /etc/passwd |grep bash |grep home | awk -F: '{print $1}' > users.txt

Begin the while loop. The variable NAME will be read from users.txt

while read NAME

Setup the file copy in the "do" part of the loop.
do cp /tmp/test.txt /home/$NAME

echo "Copied file to $NAME"

echo " "

Change the permissions on the copied file to the user's.

chown $NAME:$NAME /home/$NAME/test.txt

echo "And, changed ownership to $NAME"

echo " "

Tell the loop when to stop, when there's no more names in the list.

done < names.txt

Execute the file and watch the output from the echo commands.

root@aspen:~# ./copy_file.sh

Copied file to khess

And, changed ownership to khess

Copied file to nimbus

And, changed ownership to nimbus

Copied file to bob

And, changed ownership to bob

Copied file to matthew

And, changed ownership to matthew

Copied file to mark

And, changed ownership to mark

Copied file to luke

And, changed ownership to luke

Copied file to john

And, changed ownership to john

To test that the script ran correctly, check one of the user's home directories.

ls -la /home/matthew/

total 24
drwxr-xr-x 2 matthew matthew 4096 2011-06-12 14:54 .

drwxr-xr-x 10 root root 4096 2011-06-12 14:53 ..

-rw-r--r-- 1 matthew matthew 220 2011-06-12 14:20 .bash_logout

-rw-r--r-- 1 matthew matthew 3353 2011-06-12 14:20 .bashrc

-rw-r--r-- 1 matthew matthew 179 2011-06-12 14:20 examples.desktop

-rw-r--r-- 1 matthew matthew 675 2011-06-12 14:20 .profile

-rw-r--r-- 1 matthew matthew 0 2011-06-12 14:54 test.txt

Now you can put any commands that you want into the loop. Generate a list of whatever you want,
act upon each member of the list, and you're done.

Creating a User Space Spy Script

I call this script a user space "spy" because it creates a report in html that tells you how much space,
in megabytes (MB), each user is using in his home directory. Here is the entire script and the
explanation follows.

#!/bin/bash

Create a list of users and direct it to a file.

cat /etc/passwd |grep bash |grep home | awk -F: '{print $1}' > names.txt

Create an HTML file. This part must be outside the loop.

echo "

" > user_space.html
echo " User

Space" >> user_space.html # Start the WHILE loop while read NAME do # This sets output
of the command to the variable name, SPACE. SPACE=`du -sm /home/$NAME |awk -F" "

'{print $1}'` echo "

$NAME
$SPACE" >> user_space.html done < names.txt # End the table entry outside the loop. echo

"

" >> user_space.html

Read the documentation inside the file and note that items that only appear once, need to be written
outside the loop. Also remember to use double redirects (>>), when writing to a file that exists. If you
use the single redirect, (>), you'll overwrite the file with each new line. Run the script and view the
resulting HTML file in a web browser. Figure 1 shows the file in Firefox.

Figure 1: The User Space Spy HTML File in Firefox.

Note that you can set an entire command's output to a variable name. Use tick marks (`) to surround
the shell command. Use no spaces between the variable name, the equal sign, and the first tick
mark.

For an independent assignment, write this script to make the HTML file fully HTML compliant and
dress it up a bit with labels, bold headings, and more.

This is a simple sample of what loops can do for you. You should also investigate For loops and
Until loops. I've never used For or Until loops because the While loop is extremely versatile. The
type of loop you use is entirely up to you and your needs. The BASH For loop is more versatile than
its equivalent in other languages.

Stay tuned next week for conditionals, which are better known as IF-THEN-ELSE statements. These
types of programming structures allow your scripts to make decisions and give a bit of intelligence to
your scripts. If you don't get caught in any infinite loops, I'll see you there.

* A politically correct way of saying lazy.

** Make it known that you're using your advanced System Administrator skills to automate certain
processes as a labor-saving technique. That kind of attitude and business thinking may net you a
cash bonus, promotion, or at the very least some positive recognition.

